

PEOPLE ADVANCING SCIENCE

PFAS and UCMR 5 Overview

Lindsay Boone, M.Sc.
Technical Specialist

CLASSES OF PFAS-Per and Polyfluorinated Alkyl Substances

PERFLUOROALKYL

- All hydrogens on the carbons are replaced by fluorine
- Strongest chemical bond in nature
- Difficult to treat
- PFCAs and PFSAs

POLYFLUOROALKYL

- ▶ Non-fluorine atom (usually H or O) attached to at least one, but not all, carbon atoms in the tail
- Creates a "weak link" susceptible to biotic or abiotic degradation
- More susceptible to treatment
- Fluorotelomers
- AKA precursors

pacelabs.com 3

Which target compounds to focus on?

The Two Most Widely Study PFOA and PFOS

Perfluorooctanoic acid (PFOA)

Perfluorooctane sulfonate (PFOS)

- Let's Talk about Bonding C-F
- Who made them?
- What are their uses?
- Why they are so good at what they are made for?
- Known Adverse Health effects.

Polyfluorinated PFAS

Adverse Health Effects of PFAS-PFOA and PFOS

ITRC (Interstate and Regulatory Technology Council) List

- Animal
 - □Liver effects
 - □Immunological effects
 - ■Developmental effects
 - ☐ Endocrine effects (thyroid)
 - ☐Reproductive effects
 - ☐Hematological (blood) effects

☐Tumors (liver, testicular*, pancreatic*)

- ■Neurobehavioral effects
- * PFOA Only

- Human (possible links)
 - Liver effects (serum enzymes/bilirubin, cholesterol)
 - Immunological effects (decreased vaccination response, asthma)
 - Developmental effects (birth weight)
 - □ Endocrine effects (thyroid disease)
 - □ Reproductive effects (decreased fertility)
 - Cardiovascular effects (pregnancy induced hypertension)
 - □ Cancer* (testicular, kidney)

Replacement PFAS

6:2 Fluorotelomer acrylate

- Industry Claims they are safer
- Precursors are still longer chain **C8**
- PFBA-food packaging and film
- PFBS-surfactants/repellents, metal plating, pesticides, and flame retardants

AKA HFPO-DA (Dimer Acid)

Dupont 2007 as a replacement product for **PFOA**

GenX

THE PFAS LIFECYCLE

- Industry is the most common source of PFAS contamination both the manufacturers of PFAS chemicals and those that use them in the products they make.
- PFAS do not degrade naturally, chemicals can remain in the surrounding soil for decades.

- Lack of federal regulation
- Non-uniformity of state regulations or test methods
- Lack of environmental test methods
- Ever-changing variety of compound lists and RLs
- **▶** Thousands of PFAS compounds
- Expanding variety of analytical matrices
- Low DLs vs. contaminated matrices
- Challenging field sampling protocols

PFAS Strategic Roadmap US EPA's Commitments to Action 2021–2024

RESEARCH

- Invest in R&D
- Increase understanding of PFAS exposures and toxicity, human health and ecological effects, and effective interventions that incorporate the best available science.

RESTRICT

- Pursue a comprehensive approach to proactively prevent PFAS from entering air, land, and water at levels that can adversely impact human health and the environment.

REMEDIATE

- Broaden and accelerate the cleanup of PFAS contamination to protect human health and ecological systems.

REGULATORY UPDATE: FEDERAL

- ▶ UCMR 5 finalized December 2022 for the nations Public Water Systems
- ► Establish a national drinking water MCL PFOA/PFOS (Fall 2022)
- GenX Toxicity report released 25-Oct-21, PFBA, PFHxA, PFHxS, PFNA, and PFDA to follow (Fall 2021, ongoing)
- Propose rule PFAS chemicals as hazardous substances (Spring 2022)
- Address PFAS air emissions, mitigation, fate and transport (Fall 2022)
- ► Restrict discharge on industrial releases of PFAS (2022), NPDES (2022)

Which PFAS were addressed in the new Heath Advisories?

- ▶ 4 PFAS PFOA, PFOS, GenX, PFBS
- ▶ PFOA and PFOS not in US production

Are GenX and PFBS still in production?

Yes

- GenX, a Chemours product, is the replacement chemical for PFOA in the production of Teflon
- PFBS, a 3M product, is the replacement chemical for PFOS in the production of Scotchgard

Do you think the EPA will lower reporting limits or method detection limits for PFAS in drinking water?

- ► How do the new Health Advisory levels correlate to current EPA test methods and their detection limits which are higher?
- ▶ GenX and PFBS no problem
- ▶ PFOA and PFOS <u>challenging considerations</u>

Chemical	Lifetime Health Advisory Level, ppt	Minimum Reporting Level, ppt (EPA 533 under UCMR 5)	Typical Lab Reportir Limit, ppt (EPA 533	
PFOA	0.004 (Interim)	4	2	0.32
PFOS	0.02 (Interim)	4	2	0.36
GenX	10 (Final)	5	2	0.8
PFBS	2,000 (Final)	3	2	0.44

What's the history of HAs, MCLs, and MCLGs?

- >100 Health Advisories have been issued
- ▶ 87 MCLs
- ▶ 83 MCLGs 29 are set at zero, with MCLs set at ppb levels
- Example Benzene HA-0.003 ppm, MCL-0.005 ppm, MCLG-zero

Source: https://www.epa.gov/system/files/documents/2022-01/dwtable2018.pdf

When do you think the EPA will finalize the MCL for PFOA/PFOS?

- ► MCLs and MCLGs will be proposed for public comment by Fall 2022
- ▶ MCLs and MCLGs will be finalized by Fall 2023

Do you think other PFAS compounds will be included in additional Health Advisories?

- ▶ Thousands of PFAS in production
- ▶ 29 PFAS included in UCMR 5 with health effects data associated with consumption in water
- ▶ EPA has already stated its plans to develop toxicity data for five other PFAS

UCMR 5 -BACKGROUND

- UCMR was established to monitor unregulated contaminants in drinking water every 5 years
- ▶ All large systems serving over 10,000 people are required to monitor
- ▶ EPA pays for small systems testing 3,300 to 10,000
- Addition of systems more than doubles the number required to participate to approximately 10,300
- ▶ A representative sample is taken from systems serving less than 3,300 people
- ▶ UCMR 5 was published in the Federal Registry March 11, 2021

UCMR 5 -BACKGROUND

Changes from UCMR 4 to UCMR 5

- Addition of all systems that serve 3,300 10,000 consumers compelled by AWIA 2018
- EPA is intent on paying for testing for all systems that serve 3,300 – 10,000 consumers in its "small systems" contract with 800 randomly selected smaller systems, "subject to the availability of appropriations"
- Addition of systems more than doubles the number required to participate to approximately 10,300

UCMR 5 -**TESTING &** SAMPLING

UCMR 5 contaminants and sampling

- 29 PFAS compounds by EPA 537.1 and EPA 533 each sample will be required to include 1 Field Reagent Blank per method
- Lithium by EPA 200.7
- Sampling at the Entry Point To the Distribution System (EPTDS, EP, POE) only

UCMR 5 -SAMPLING SCHEDULE

- EPA will assign a 12-month sampling schedule for each system between January 2023 - December 2025
- Groundwater Systems sample each Entry Point to the Distribution System (EPTDS) – twice during a 12 consecutive month period
- Surface water and Groundwater Under Direct Influence (GWUDI) systems – sample quarterly during a 12 consecutive month period

UCMR 5 -**BUDGETARY** INFORMATION

- EPA estimates all testing costs per sampling point, per sampling event to be \$950
- Contact us for detailed budgetary costs

UCMR 5 - SDWARS

- Safe Drinking Water Accession and Review System (SDWARS) used by PWSs and EPA-approved UCMR 5 laboratories to report results
- Internet-based electronic reporting system that utilizes a secure access portal, the Central Data Exchange (CDX), to access SDWARS 5
- SDWARS 5 user instructions and trainings for labs, PWSs, and States will be available after the final rule is published Fall 2021
- January 2022 EPA issued email to all large PWSs providing direction for actions that must be taken

pacelabs.com 29

Source: USEPA SDWARS: https://www.epa.gov/dwucmr/reporting-requirements-unregulated-contaminant-monitoring-rule-ucmr-5

- ▶ First Published DW Method
- ▶ Reports 18 PFAS
- Used for Compliance
- ▶ FRB Required
- ▶ MS/MSD are part of QC
- Does not use **Isotope Dilution**

EPA 537.1 (18) DW only					
Acronym	CAS Number				
PFHxA	307-24-4				
PFHpA	375-85-9				
PFOA	335-67-1				
PFNA	375-95-1				
PFDA	335-76-2				
PFUnA	2058-94-8				
PFDoA	307-55-1				
PFTrDA	72629-94-8				
PFTA	376-06-7				
PFBS	375-73-5				
PFHxS	355-46-4				
PFOS	1763-23-1				
NMeFOSAA	2355-31-9				
NEtFOSAA	2991-50-6				
HFPO-DA	13252-13-6				
ADONA	919005-14-4				
9CI-PF3ONS	756426-58-1				
11CI-PF3OUdS	763051-92-9				

- Uses Isotope Dilution
- Accounts for analyte losses
- ▶ 25 PFAS reported
- Addition of source identifiers such as:

NFDHA (food packaging)

PFEESA (replacement)

PFMOPrA (manufacturing)

PFMOB (manufacturing)

- ▶ Requires FRB
- ▶ MS/MSD for QC

Analyte	Analyte	
PFBA	PFOS	
PFPeA	FTS 4:2	
PFHxA	FTS 6:2	
PFHpA	FTS 8:2	
PFOA	PFMPA	
PFNA	PFMBA	
PFDA	HFPO-DA	
PFUnA	NFDHA	
PFDoA	ADONA	
PFBS	PFEESA	
PFPeS	9CI-PF3ONS	
PFHxS	11Cl-PF3OUdS	
PFHpS		

ANALYTE	537.1	533
PFEESA		•
HFPOA-DA/Gen X	•	•
NFDHA		•
PFOS	•	•
PFUdA	•	•
N-MeFOSAA	•	
PFPeA		•
PFPeS		•
6:2 FTS		•
N-EtFOSAA		
PFHxA	•	•
PFDoA	•	•
PFOA	•	•
PFDA	•	•
PFHxS	•	•
PFBA		•
PFBS	•	•
PFHpA	•	•
PFHpS		•
PFNA	•	•
PFTeDA	•	
PFMOPrA		•
8:2 FTS		•
PFTrDA	•	
9Cl-PF3PONS	•	•
4:2 FTS		
11Cl-PF3OUdS		
PFMOBA		•
ADONA	•	•

pacelabs.com 33

CARBON ISOTOPES

Atoms

Atomic nucleus

6 protons + 6 neutrons

No additional neutrons

6 protons + 7 neutrons

One additional neutron

6 protons + 8 neutrons

Two additional neutrons

How does Isotope Dilution Work?

The Chemistry stays the same the only difference is the molecular weight Note-Example weights are the amount of PFOS in the sample

Native PFOS in sample weighs X

Step 1

Native PFOS weighs X

Native PFOS weighs 125

Labelled PFOS weighs 100

Labelled PFOS weighs 90

Labelled PFOS weighs 80

Solve for X based on ratio Simplified

Why is additional training necessary?

► These items contain PFAS and may contaminate your samples

Clothing and Hygiene

- No clothing or boots containing Gore-Tex™
- Safety boots must be made from polyurethane or PVC
- No materials containing Tyvek®
- Do not use fabric softener on clothing to be worn in field
- Do not use cosmetics, moisturizers, hand cream, or other related products the day of sampling
- Do not use unauthorized sunscreen or insect repellant
- No Sharpies markers
- Wet weather wear made of polyurethane and PVC only
- Wash hands and put on powderless nitrile gloves
- No food or drink at the sampling site

FIELD QC SAMPLES

FIELD REAGENT BLANK (FRB)/ FIELD BLANK (FB)

meant to validate that field sampling activity did not cause sample contamination

EQUIPMENT/ RINSATE BLANK (EB)

meant to validate cleanliness of sampling equipment before sampling and between sampling points

TRIP BLANK (TB)

meant to validate that samples were not cross-contaminated in route to lab

pacelabs.com 39

Sampling Procedure – Container Set Contents

- Container sets will be shipped to you each quarter
- FedEx Ground Delivery

Sampling Procedure – Check Cooler Contents

- Remove and open large cooler bag that includes:
- Container sets for each POE sampling point in ziplip bags
- Field Reagent Blank sets in ziplip bags
- MS/MSD container sets (at lab's discretion)

Sampling Procedure – Container Set Contents

- Container order form that itemizes contents review
- Chain of Custody form complete this form
- Sampling instructions review
- Nitrile gloves put these on after washing hands
- Return sample shipping label FedEx Standard Overnight for weekday delivery - do not ship on Friday

Sampling Procedure – Container Set

- Samples-2 X 250 mL 537.1 contains Trizma
- FRB-1 Empty 250 mL 1 PFAS free Water filled 250 mL with Trizma Labelled 537.1
- Samples-2 X 250 mL 533 contains ammonium acetate
- FRB-1 Empty 250 mL 1 PFAS free Water filled 250 mL with ammonium acetate Labelled 533
- MS/MSD if needed will be 2X250 mL labeled by method
- Lithium 2 X 250 mL with Nitric Acid for Samples and one Trip Blank

Sampling Location

- All samples are to be taken at each Point of Entry to the distribution system
- Prior to sampling open valve and let water run for several minutes
- Slow water flow down to the diameter of a pencil

Sampling Procedure

- Wash hands and put on nitrile gloves
- Remove container cap and fill to neck one at a time
- Do not place lid face down on any surface
- Fill each sample container set to neck
- Fill each MS/MSD container set (if included) to the neck
- Do not overfill as this will wash out dry chemical preservative
- Open, fill, and close each lid tightly one container at a time
- Invert each container 5 times to dissolve preservative in water
- Complete info required on container labels
- Return containers to applicable ziplip bags and seal bags

Sampling Procedure – Field Reagent Blank (FRB)

- 1 FRB per sampling point
- 2 containers filled with PFAS-free DI water
- 2 empty containers
- Purpose of FRB is to verify no cross contamination of samples
- Open containers of DI water
- Open empty containers, do not place lid face down on any surface
- Pour DI water into empty containers
- Close lids tightly
- Invert containers 5 times to dissolve preservative in water
- Complete info required on container labels
- Return containers to applicable ziplip bag and seal bag

Sampling Procedure – Container Labels

- Record on each container label
- Sample ID your POE sampling point ID
- Sampling collection date
- Sampling collection time
- By your initial
- Collection date and time required for holding time purposes -14 days for EPA 537.1, 28 days for EPA 533

Repack the Cooler

- Place sealed ziplip bags of samples and FRBs into large cooler liner bag
- Fill large cooler liner bag with ice
- Samples must be received at lab 2-10°C
- If sampling on hot days and POE water is warm consider keeping samples on ice overnight, drain cooler, and repack with ice
- LOTS of ice

PFAS TEAM

Lindsay Boone, M.Sc. **Technical Specialist** 910-262-5098 Lindsay.Boone@pacelabs.com

Kevin Custer, Ph.D. Program Manager, Environmental Compliance & Emerging Contaminants 937-209-8752 Kevin.Custer@pacelabs.com

Stephen Somerville Technical Director, PFAS 804-516-5887 Stephen.Somerville@pacelabs.com

Paul Jackson Program Manager, Environmental **Compliance & Emerging Contaminants** 813-731-1595 Paul.Jackson@pacelabs.com

Mike McFadden Senior Account Manager/ Federal Program Manager 919-868-5215 Mike.McFadden@pacelabs.com

For questions contact:

THANK YOU

Additional resources:

- PFAS.com
- PACELABS.COM | Search: PFAS

Lindsay Boone
Technical Specialist
910 262 5098
Lindsay.Boone@pacelabs.com